
ISRAEL JOURNAL OF MATHEMATICS 92 (1995), 375-395 

WIENER-WINTNER RETURN-TIMES ERGODIC THEOREM 

BY 

I.  ASSANI* 

Department of Mathematics 

University of North Carolina at Chapel Hill, NC 27599, USA 

e-mail: assani@math.unc.edu 

AND 

n .  LESIGNE**  

Ddpartement de Mathdmatiques 

Universitd Franqois Rabelais, Parc de Grandmont, 37200 Tours, France 

e-mail: LESIGNE@UNIV- Tours.FR 

AND 

D. RUDOLPH*** 

Department of Mathematics 

University of Maryland at College Park, MD 20740, USA 

e-mail: djr@math.umd.edu 

ABSTRACT 

We s ta te  a new ergodic theorem,  combining  the  W i e n e r - W i n t n e r  t heo rem 

and  Bourga in ' s  t heo rem concerning the  convergence of ergodic averages 

along r e tu rn - t imes  sequences.  

We consider ergodic averages of the  form 

N - 1  
1 e inO" f ' (Sny) ,  f (Tnx)  

n=O 

and  we show t ha t  the  behaviour  of  these  averages character izes an  a lgebra  

C of funct ions,  which conta ins  the  Kronecker  a lgebra  and  has  in teres t ing  

propert ies ,  l inked wi th  mul t ip le  recurrence ergodic theorems.  
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I n t r o d u c t i o n  

Let (X, gV,#,T) be a probability measure preserving system (m.p.s . ) .  The 

Wiener-Wintner ergodic theorem, respectively the Bourgain return-times the- 

orem, states that,  for all f E L ~ ( # )  and for #-almost all x, the sequence 

(f(Tnx))n>_o is a good sequence of weights for the weighted mean ergodic theo- 

rem, respectively for the weighted pointwise ergodic theorem. 

Let us recall precisely these two results. 

WIENER-WINTNER THEOREM: I f ( X ,  }r, #, T) is a m.p.s, and if  f E LI(/~), then 

for #-a/most ali x, for all 0 E R, the sequence 

(1) 
N - 1  

n-~O 

converges. 

Moreover, i f  the m.p.s, is ergodic, there is an equivalence between 

�9 the function f is orthogonal to the Kronecker factor of the m.p.s. (i.e., 

orthogonal to all the eigenfunctions for the action o f T  on L2(#)); 

�9 for #-almost alt x, 

1 N - 1  

lim sup ~ ~ e i ~ e . f ( T ~ x )  = 0; 
N---,+oo 0ER n=O 

�9 ?oral lOER,  

_~_N-~ 1 e i've �9 f o T ~ = 0. lim 
N--*+oo 

n~0 

This result first appears in [WW] for its first part. The uniform result is used 

in [B2] and its proof can be found in, for example, fAll or [L2]. 

BOURGAIN'S RETURN-TIMES THEOREM: II e (X,.~, Iz, T) is a m.p.s, and if  f E 

L2(#), then there is a set of full measure X ( f )  C X such that ,  for all x E X ( f ) ,  

for any m.p.s. (Y, ~o, u, S), and any f '  E L2(v), the sequence 

N-1  

n---0 
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converges for v-almost all y. 

Proofs of this result can be found in [B1], [BFKO] and in JR1]. It is not difficult 

to see that the first part of the Wiener-Wintner theorem is exactly the version 

"convergence in L2(g) '' of this ergodic theorem. 

We now state our convergence theorem. 

THEOREM 1: Let (X,~-,#,T) be am.p.s,  and f E L2(#). For #-almost a l lx  we 

have: for any m.p.s. (:Is, ~, v, S) and any f '  E L2(~,), for u-almost all y, for a11 

(1 1 ) 
~_, e in~ f ' ( S n y ) ,  f (T~x )  

0 E R, the sequence 

(a) 

converges. 

Remarks: 

The fact that, if X , ~ , # , T )  and ( Y , ~ , u , S )  are m.p.s., f E LI(#) and 

f '  E LI(u), then, for all 0 C ~, for v-almost all y, for #-almost x, 

the sequence (3) converges is a simple consequence of Birkhoff's ergodic 

theorem. 

�9 The necessity of taking f and f~ square integrable in the return-times 

theorem is discussed in [A2]. 

�9 If (X, 9 r,  #, T) is weakly mixing Theorem 1 is a simple consequence of 

Bourgain's return-times theorem as shown in [A2]. 

In the same manner that the aVerages (1) are related to the Kronecker 

factor of the system, we shall see that the averages (3) are related to a 

new factor of the system. This factor first appears in the work of Conze and 

the second author concerning the convergence of ergodic averages of the form 
1 N - 1  -~ ~'~n=o f(TV'~x) " g(Tqnx) " h(Trnx), where p, q and r are integers (cf. [CL1], 

[CL2]). This factor also appears in the study of convergence of more general 

Furstenberg's multiple recurrence ergodic averages for distal systems (cf. ILl]). 

In [R2] a detailed study of this factor is achieved, and it is described how 

this factor is related to Kronecker factors of the ergodic components of product 

measures. This study will be used in the sequel. 

The algebra of functions, in L~176 measurable with respect to this factor 

of (X, ~v, #, T) will be called C (= C(X, ~', #, T)) and its definition is given in 

Section 1. This algebra is characterized by the next theorem. 



378 I. ASSANI, E. LESIGNE AND D. RUDOLPH Isr. J. Math.  

THEOREM 2: Let (X, jr, p ,T)  be an ergodic m.p.s, and f E L2(p). There is an 

equivalence between: 

(i) the function f is orthogonal to g; 

(ii) for p-almost all x, for any m.p.s. (Y, ~, v, S) and any f '  �9 n2(v), for 

~,-almost all y, 

lira sup e i '~~ � 9  = O; 
N--*+oo OER n=O 

(iii) for p | p-almost all (x, x'), for all 0 E •, 

(iv) 

N - 1  

lim N ~ eine" ](T'~x')" f (T~x)  = 0; 
N - - + o o  

n---~0 

II Ii N-I~_==O L2(~| lim sup - -  ~ e in~ f(T'~x') �9 f (Tnx )  = O. 
g--.+oo 0eR Y 

In the proof of these theorems we need to describe some disintegrations of 

measures associated with the return-times theorem. In order to do this, it is 

convenient to work with regular m.p.s. A m.p.s. (X, jr, p, T) is called regu la r  

if the space X is compact metrizable, the a-algebra f is Borel and the transfor- 

mation T is continuous. It is known that  every separable m.p.s, is equivalent to 

a regular one (cf., for example, IF], chapter 5), and it is enough for us to prove 

our theorems for regular m.p.s. 

Our paper is organized as follows. In the first section we give the definition 

of the factor g: it is the maximal factor of the type "abelian group extension 

of a group rotation" which satisfies a certain functional equation. Then we give 

another form of a result in JR2] on eigenfunctions of product transformations. 

In Section 2, we prove a disintegration measure theorem related to the return- 

times theorem. 

The third section is devoted to the proof of Theorem 1 for functions f of 

the aigebra g. We used here the functional equation and the Wiener-Wintner 

theorem. 

In Section 4, we prove theorem 1 for functions f in the orthogonal of g. We 

used here Bourgain's return-times theorem and the classical Van der Corput 

inequality. 
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Theorem 2 is proved in the last section. 

1. Eigenfunctions of  product transformations and the algebra g 

We recall, for the reader 's  convenience, the definition of the algebra C and some 

basic facts about  it. Details of the matters  given in this section can be found in 

[R2]. 

1.1 DEFINITION. Let (X, ~ ,  #, T) be an ergodic m.p.s. 

This system admits  a maximal  factor of the type "extension by a compact 

abelian group of a translation on a compact abelian group", that  is to say a 

system (G • G1, B(G • G1), mc | me1, Rgo,~), where 

G and G1 are compact abelian groups, 

B(.) is the borelian a-algebra and m. the Haar measure, 

is a measurable map from G into G1, 

go E G, 

Rgo,~, (g, gl) = (gog, ~o(g)gl), and 

(G, B(G), ma, Rgo : g ~ ggo) is the maximal discrete spectrum factor. 

A character X of G1 will be called a C - c h a r a c t e r  if there exists measurable 

maps A: G --* S 1 and u: G x G -~ S 1 such that,  for all t E G, for a.a. g E G, 

u(t, gog) 
(E)  = " 

The set of g-characters is a subgroup of the dual group 61; we denote 

by K its orthogonal. The system (G • G1, . . . ,Rgo ,  ~) has a natural  factor 

(G • G1/K, B(G • G1/K), mc  | Rgo,,p). This factor will be called the C- 

f ac to r ,  and we denote by C the algebra of C-factor measurable bounded functions 

on X.  

1.2 EXAMPLES. The two basic examples of m.p.s, which coincide with their 

C-factor are given by: 

�9 Extensions by compact abelian groups of translations on compact abelian 

groups with affine cocycles ~. 

�9 Translations on compact quotients of order two nilpotent groups. 

1.3 DISINTEGRATION OF PRODUCT MEASUttES. Let (X, ~', #, T) and (Y, ~o, u, S) 

be two ergodic m.p.s. 
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These two systems admit  a maximal  common discrete spectrum factor, which 

can be represented as a translation on a compact abelian group 

(H,B(H),mH, Rho) with Rho(h) = hoh. 

We denote by E x and EH Y the projection operators (conditional expectations) 

defined on, respectively, $" and ~, with values in L~ For a.a. c in H,  we 

can consider the measure (# @ v)~ on X x Y defined by 

irA �9 ~" and B �9 ~, (# | v)~(A x B) = / H  (EX(A))(h) " (E~(B))(ch)dh. 

In other words, the measure (# | v)~ is the relatively independent joining of # 

and v above the common factor ({(h, ch)l h �9 H}, Rho x Rho). It  is known that  

these measures (# | v)~ are T x S-ergodic and that  # | v = fH(# | v)cdc. 

1.4 KRONECKER FACTORS OF ERGODIC COMPONENTS. We denote 

by (G x G2, B(G • G2), my | mv2,Rgo,~) the C-factor of the ergodic m.p.s. 

(X, $', it, T), and by (G' x G~2, B(G' x G~2), me, | Rg~,~,) the C-factor of the 

ergodic m.p.s. (Y, ~, v, S). There are closed subgroups L and L' of, respectively, 

G and G', such that  H = G/L = G'/L', and ho �9 H such that  ho = goL = g~o L'. 
Let s be a measurable section from H into G (for each h �9 H, s(h)L = h). 

The m.p.s. (G, B(G), my, Rgo) can be described under the form 

(H x L,B(H) • B(L),mH x mL,Rho,O) where a(h) = s(hoh)-lgos(h). 

In the same way, let s ~ be a measurable section from H into G ~, and a ~ the 

associated cocycle from H into G r. 

For each c E H,  we consider the m.p.s. 

Cc = (H • L x L' • G2 x G~, Borel a-algebra, Haar  probability, Uc) 

where 

Uc(h, l, l', g2, g~, ) = (hoh, a(h)l, a'(ch)l', ~(s(h)l)g2, ~o'(s'(ch)l')g~) ). 

For almost all c, the m.p.s. Cc is a factor of the m.p.s. (X x ]7, (# | v)c, T x S). 

In [R2] the next theorem is proved. 
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THEOREM 3: For almost all c in H, the eigenfunctions of the m.p.s. 

(X • Y, (/~ | u)c, T • S) are C~-measurabte. 

In the sequel we will use this result in the following form: 

THEOREM 3': Let f E LZ(/z) and f '  E LZ(u). I f  the function f is orthogonal to 

the C-factor of the m.p.s. (X, Y:, #, T) then, for almost all c in H, the function 

f |  is orthogonal to the Kronecker factor of the m.p.s. (X x Y, (#@u)c, T • S). 

A converse of Theorem 3 ~ is given by Proposition 3 in Section 5. 

2. Fub in i  R e t u r n - T i m e s  T h e o r e m  

The disintegration of product measure presented in the next theorem reduces to 

the Fubini theorem in the case where S = I. 

If X is a topological space, we denote by C ( X )  the space of continuous complex 

functions on X. 

THEOREM 4: Let (X, ~-, #, T) be a regular ergodic m.p.s.. There exists a set of 

full measure X C X such that 

(1) for all x E X ,  for any regular m.p.s. (Y, ~, u, S), there exists a family 

(rnxy)yev o f t  x S-invariant probability measures on X x Y such that 

(l-a) for u-almost all y, for ali f E C(X)  and all f '  E C(Y) ,  

1 N-1 fX lira ~ ~ f ' (Sny) f (T '~x)  = f | f '  dm~v ; 
N ~ + o o  n=0  x Y 

(l-b) 

| u = J r  m~y du(y); 

(2) i f  f E LI(#),  there exists a set of full measure )(f  C X such that, for all 

x E X i ,  we have: 

for any regular m.p.s. (Y, ~, u, S), for all f '  E C(Y) ,  for u-almost all y, 

N - 1  

n----O 
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Remark: The hypothesis of ergodicity of the m.p.s. (X, ~-, #, T) is crucial in 

this theorem. 

Proofo[ Theorem 4: Let D be a denumerable set of continuous functions on X, 

dense in C(X) for the uniform topology. With each f in D we can associate, by 

the return-times theorem, a universal set of full measure X(f). 
We denote by X I the set of generic points of the m.p.s. (X, ~', #, T); for all 

f E C(X), and all x E X I 

l i m N  ~ f(Tax)= fx  fd#.  
n<N 

We denote by )(  the set X' n (NleD X(f)). This set )~ is of full measure in X. 

We remark that the set ) f  is, for all continuous functions f on C(X), a universal 

set in the sense of the return-times theorem. Let us quickly see why. We have, 

for all f E C(X), all f E D, and all x E )(,  

v. V_ S':",>S("-> 
n<N n<N 

= ]h-~N ,~<N f ' (Say)( f -])(Tax)-  l imN ,~<~N f1(Say)(f-])(Tax) 

1 
-< 21if - ]11~ lira -~ ~<N If'l(S'Y) 

(for any m.p.s. (Y, ~, v, S) and all f '  E Ll(v)) .  

We now fix x E )(.  Let (Y,~o,v,S) be a regular m.p.s., and D'  a 

denumerable dense set in C(Y). 
With each f in D and each f '  in D t, we associate a set Y(x, f, fl) of full 

measure in Y, where the sequence ( ~  ~ a < N  f'(SnY)f(T'~x)) converges. We use 

the notation Y(x) = N{Y(x,f,]I)I f E D and f l  E OI}. This set Y(x) is of full 

measure in Y and, by the same argument as before, we have: for all ] E C(X) and 

fl E C(Y), the sequence (~)-']~n<N ]'(S'~Y)f(Tax)) converges for all y E Y(x). 
Let B be the algebra of finite linear combination of functions on X • Y of 

the form f | f l  with f E C(X) and fl E C(Y). For each h E B, we note 

1 ~ h(Tnx, Shy ) L~y(h) = lim ~ 
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This defines (for each y E Y(x)) a positive uniformly continuous linear form on 

B. It extends by continuity to all C(X x Y). We have L~y(1) = 1, thus this 

extension defines a probability measure m~y on X • Y satisfying 1-a. Because 

of the continuity of T and S, it is clear that this measure is T • S-invariant. 

Let us now prove 1-b. We keep x fixed in .~. If f E C(X) and f '  E C(Y), 

the map y ~ L~y(f @ fr) is bounded measurable, as limit of a sequence of 

uniformly bounded continuous functions, and 

fyL.~(f | f ')dv(y): / liNm(N .~<N f'(S'~Y'f(Tnx'))dv(Y) 

n<N 

= / f | fldt~ | u 

because x is generic. 

This equality now easily extends to all functions h E C(X x Y) and so we 

have reached the identity 

(4) 

for any x C X and y E Y(x). 
It remains to prove that,  for all F E L I ( #  | u), we have: for u-almost all 

y, F E Ll(m~y); the map y H fx• Fdrn~y is u-integrable and 

/ /  Fdm~ydu(y) = / Fd(l~ | u) . 

Going from (4) to this point is a general result on measure disintegrations and it 

can be done by classical arguments used in the proof of the Fubini theorem. Let 

us sketch these arguments in our particular case. 

We fix x in )(.  In a first step, we prove that if N is a p | u-negligible 

set then, for u-almost y, m~y(N) = 0. In order to do this it suffices to write 

the characteristic function 1N as a decreasing limit of lower semi-continuous 

functions and each of these lower semi-continuous functions as an increasing limit 

of continuous ones, and to apply (4). In the second step we consider a function 
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F in LI(#  | v). There exists a sequence (un) of continuous functions on X x Y 

such that  

u n = F  i n L l ( # |  and ~ l l u n ] l l  < + o o .  
n n 

We have ~-']~n un = F outside a # | v-negligible set N. By (4), we have 

So, for v-a.a, y, ~,,~ f [unldm~y < +c~. This implies that, for v-a.a, y, ~-~n u ,  

converges outside a mx:negligible set N u. So, for v-a.a, y, F = ~ n  un outside 

the mx:negligible set Ny U N. (Here we use the first step.) 

We also have 

/Fdm~y=~/undmxy.  

Coming back to (5), we have ~-~n f[fundm~u[dv(y) < +c~, which implies that 

~_,,~ f u,~dm~ converges in Ll(v) and 

f (~ f u,~dm~)dv(y)= ~ f (f u.dm~)dv. 
Using (4), this is exactly 

f f  Fdm~udv(y)= ~ f und~,| f Fd#| 

We have proved the first part of Theorem 4. We now prove the second. 

Let f E LX(/~). We fix a sequence (fk) of continuous functions on X which 

converges to f in L 1 (/~). We denote by )~! the set of all x in X such that 

x E 3( and 

for each k, limN 1 -~ ~n<N If - AI(T"x) = I l l  - A l l 1 .  

This set ~'y is of full measure. We fix x E )f].  If (Y, ~, v, S) is a regular m.p.s. 

and f' E C(Y), we have, for v-a.a, y, 

Iimzupl--  :o :'dm'. I 

_< (limsup 1 E If'l(SnY)If - fkl<Tnx)) + f If -- f,l | If'Idm..u ' 
x N z v  n < N  

___ llY'lloo IIf - AIIx + [ If - A[ | lY'ldm~y 
d 
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(the first of these two inequalities makes use of l-a, and the second uses the choice 

of  x) .  

By 1-b we then have 

Sl,=r , l,<x,, s | s'<,.,,., <,,,(,,) 

-< J l f ' l l~  JJf - f ,  Jll + Ilf - fklllllf'lll. 

This implies that,  v-a.a, y, 

lim 1 f x  N N ~ f ' (S~Y)f(Tnx)  = f | f'dm=y, 
n<N x Y  

and Theorem 4 is proved. 

3. P r o o f  o f  T h e o r e m  1 for  f u n c t i o n s  f in t h e  a l g e b r a  C 

PROPOSITION 1: Let (X,Y:,I~,T) be an ergodic m.p.s. The set of functions f in 

L2(#) such that 

for p-almost all x, for any m.p.s. (Y, ~, v, S), for all fl  E L2(v), 

for v-almost ali y, and for ali 0 E 
1 ~ einOr ~ t [ T n x ~  the sequence -~ z-.,n<N j ~ y) j (  ] converges 

is a dosed linear subspace of L2(#). 

Proof of Proposition 1: It is easy to see that  if (fro) is a sequence in L2(#) which 

converges to f ,  and if an element x of X satisfies, for each m, the sequence 

converges for v-a.a, y and 

then for v-a.a. 

all 0. 

e inO- tzSn  ~ .  , T n x . ~  

n< lV 

n<N 

1 x"- ,  e inO~tzSn ~ ~ .  Z T n x ~  y, .the sequence ( ~  2_~.<N I L ujJm( j) converges for 

The proposition is a direct consequence of this fact. 
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Remark: In order to prove Theorem 1, it is enough to consider functions f~ in 

a dense subset of L2(v); this is easy to see by looking at bounded functions f 

(allowed by Proposition 1) and using the maximal ergodic theorem, uniformly 

in 0. 

We now want to prove theorem 1 for functions f in C. Such functions can 

be seen as defined on the C-factor 

(G • G2, B(G • G2), mG | m02, Rgo,~o) 

and, according to Proposition 1, it is enough to prove the result for functions f 

of the form 

f(g,  g2 )=7(g ) 'X (g2)  w i t h T E 0  and X E 6 2 .  

We fix such a function f .  We then have 

-~ ~ ~,.o. f R~o,~(g ,g2) �9 f ( ~) 
n<N 

n<N 

where ~o(n)(g) = qo(g) �9 ~o(g-go) '"  ~o(g~ -1 '  g). So we are looking at the sequence 
1 -~ ~-~n<N ei'~e" "/(go) n" Xo~~ " f ' (  SnY) �9 We know that  there exist measurable 

maps A from G into S 1 and u from G x G into S 1 such that, for any t E G, 

Xo~,(gt) = ~(t) . ~,(t, ~og) 
Xo~(g) u(t, g) 

To exploit this equation, we are going to replace g by gt in the sequence we want 

to study. We have 

Xo~o(")(g) u(t,g) 

and the sequence ~ ~'~n<N ein~ �9 7(go) '~ �9 Xo~O(n) (gt ) . f '  ( Sny ) converges iff the 

sequence ~ Y':~n<N ein0" 7(go) '~" A(t) n" u(t, g~g). Xo~O(n)(g). f ' (Sny)  converges. 

By the Wiener-Wintner theorem, we have: 

for any m.p.s. (Y, qo, v, S), for all f '  e L~176 

(5) for m a  x v-a.a. (g,y), 

for all a e R, the sequence ~ ~-']~,~<N eina "Xo~~ converges 
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(apply the Wiener-Wintner theorem to the product of the system (Y, ~, v, S) by 

the C-factor, and to the function (y, g, g2) ~ X(g2)f'(y)). 
Let (vk)keN be a sequence of linear combinations of characters of G • G 

such that, for almost all t E G, 

lim Ilu(t, .) - vk(t, " ) l l L l ( a )  = 0 .  
k---,+oo 

In order to construct such a sequence (vk), take a sequence (wk) of linear com- 

bination of characters G x G, which converges to the function u in LI(G x G); 

by Fubini, the sequence of functions t ~ I[u(t, .) - wk(t, ")llLl(a) converges to 

zero in LI(G). Extract from this sequence an almost everywhere convergent 

subsequence. 

By (5), we have, for any m.p.s. (Y, ~, v, S), for all f '  e L~(v), for a.a. 

gEG,  

(6) 

for v-a.a, y, for all 0 E R, for all t E G and for all k E N, 

the sequence 

E,,<N e'"~ (~(g0))". (~(t))". vk(t, g~g). x0~(")(g)- f'(s"y) 
converges. 

Let G(Y, f ') be the set of g satisfying (6). Let A be the set of couples (t, g) 

in G • G such that 

N--.+oo lim 1N vk(t'g'dg) I I ~, ( t ,  g ~ g )  - = ~ , ( t ,  . )  - v k ( t ,  .) 
n<N LI(G) 

and 

lira Ilu(t, .) - vk(t, " ) I I L ' ( C )  = 0 .  
k---.+oo 

By Birkhoff's ergodic theorem and by the choice of the vk, this set A has full 

measure in G x G. 

We claim that 

(6') 

for any m.p.s. (Y, qo, v, S), for all f '  E Lee(v), for all g E G(Y, f'), 

for v-a.a, y, for all 0 E R, and for all t e G such that (i' g) e A, 

the sequence 

.AN := --~ E,,<N ein~ ~(go)"" ~(t)'n. ,,(t,g~'g). Xo~()(9)" f'(S~Y) 

converges. 
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Indeed, using (6), we have for any k, 

limsup [AN - AM[ _< 2 [[f'[[oo limsup I ~ [u(t, ggg) - vk(t,g~g)[. 
N,M-.-~+oo N.-*+oo Iv n < N  

Thus, if (t, g) E A, we have 

limsup IAN - ,AM[ ~ 2 Ilf'[Io~ i~f Ilu(t, .) - v K t ,  ")tlL,(a) = 0.  
N,M---*+oo 

This proves (6)'. 

Let B = {h �9 al for any (II, ~o, u, S), for all f '  �9 L~176 there exists 

g �9 G(Y, f ' )  and t �9 G such that  (t, g) �9 A and h = tg}. 

From the fact that the set {(tg, g)[ (t,g) �9 A} is of full measure in G • G, 

we deduce that the set B is of full measure in G. Finally, if h �9 B, then, for any 

(II, ~o, v, S), for all f '  �9 L~(y) ,  for v-a.a, y, for all 0 �9 R, the sequence 

1 
~ e 'n~ �9 ~(go)  ~ �9 ( X o ~ ) ( n ) ( h ) .  f'(S"(y)) 
n ( N  

converges. This is a direct consequence of the preceding calculations and of 

statement (6)'. 

This concludes the first part of the proof of Theorem 1. | 

4. P r o o f  of  T h e o r e m  1 for t h e  func t ions  f in t he  o r t h o g o n a l  of  C 

In this section we shall consider regular measure preserving systems. 

(X, 5 r ,  #, T) be an ergodic m.p.s, and f E L~176 

PROPOSITION 2: For #-a.a. x, we have: 

if  (II, ~, u, S) is an ergodic m.p.s, and f '  a continuous function on Y ,  

(a) for u-a.a, y, for all k E Z, 

Lk(x ,y)  := lim N ~ f ( T " + k x ) "  f (Tnx)"  f '(Sn+kY)" f ' (SnY) 
N--~+ov 

exists; 

(b) for v-a.a, y, there exists a positive measure azy on [0, 2~r] such that 

/o Lk(x, y) = e-itka~y(dt) (k E Z); 

(c) i f  f E C • then, for v-a.a, y, the measure a~y is continuous. 

Let 
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Proof'. 

(a) Just apply Bourgain's return-times theorem to the system ( X , . . . ,  T) with 

the function f (Tkx)  �9 f(x)  and to the system (Y, . . . ,  S) with the function 

f'(s~y) �9 f'(v). 
(b) It is a direction application of Bochner's theorem. Note that 

Lkl-k2(x,Y)= lira 1 N-+oo -~ ~ ,  f(Tn+k'x)" f(T"+k.x), f'(Sn+~'~), f'(S~+~2y). 
n < N  

(c) We now suppose that f E C • By Theorem 3', this implies that  the 

function f | f '  is orthogonal to the Kronecker factor for almost all er- 

godic components of the product measure # x v. By the Wiener-Wintner 

theorem, this implies that,  for # • v-a.a. (x, y), for all a E R, 

lim 1 ~-~+o~ ~ ~ e'"~" f(T~x)" f'(S"y) = O. 
n < N  

Using the notation and the first part of Theorem 4, we have: 

for all x E .~, 

(7) for v-a.a, y for mxy-a.a. (~c,~l), 

for all a e R, lim ~ ~ n < g  e ' ~ "  f(T=~c)f'(S~Y) = O. 

By the second part of Theorem 4, there exists a set X} of full measure in 

X such that: 

for all x E X}, for any ergodic m.p.s. (Y, ~, v, S), for all F �9 C(Y), 

(8) for all k �9 Z, and for v-a.a, y, 

lim ~ ~ f(Tn+kx)f(T'~x)F(S"y) = f f(TkSc).'f(~).F(~)dm~v(Sc, ~). 
n < N  

We now consider an element x of X} ~ )~ which satisfies properties (a) and 

(b) of our proposition. 

By (8), we have, for v-a.a, y, 

y) ---- f f(TkYc) �9 f(x)" f'(Sk~l) �9 f'(~l)dmxu(~c, ~l). Lk(x, 

If e �9 [0, 2~r], we have 

a~u({e})= lim 1 5-" eiek Lk(x, y) 
N--- ,+oo-g ~ - r  

k < N  

[ , ,  
: lim l f (~:)  f'(~l)~-~ 2_, e "f(Tk~c) .f'(Sk~l)jdmxu(5;,~l) N.-,+oo j 

x k < N  

= 0 by (7). 
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This concludes the proof of Proposition 2. 1 

END OF THE PROOF OF THEOREM 1. W e  suppose  t h a t  f �9 L ~ ( # )  [q C • a n d  

f' �9 C(Y). We want to prove that, for any x in the set of full measure given by 

Proposition 2, for v-a.a, y, 

1 
lim sup -~ E ei"~ f'(SnY)" f(Tnx) = O. 

N ~ + o o  OER n < N  

This can be achieved using Van der Corput's classical inequality. Let us recall it: 

if (u,)0<,<N-1 is a family of complex numbers and if K is an integer between 0 

and N - 1, then 

+ 

N + K  
N2(K + 1) E lUn[2 

n < N  

2 ( N + K )  K /N-k-1 ) 
N 2 ( h ' + I ) 2 E ( K + I - k ) R e (  E u.+k'ft. �9 

k=l " n=0 

The proof of this inequality can be found, for example, in [KN]. Using this 

inequality, we have: 

n<N 

N+K 
<- N2(K + 1) E [f'(S"Y)f(T"x)l' + 

n < N  

K [ N - k - - I  

�9 E ( K +  l - k ) R e ~  eikO E 
k=l  n=O 

2(N + K) 
N2(K + 1) 2 

f(Tn+kx), f(Tnx), f'(sn+ky), f'(Sny)). 

We fix K. The first term of the right hand side of the last inequality satisfies 

limsup N + K N.-.+oo N2(K + 1) E I .f'(S'ylf(T"x)12 <- [If'll2K + lllfll~ 
n < N  

In order to study the second term, we take x in the set of full p-measure given 
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by Proposition 2. We then have, for v-a.a, y, 

2(N + K) 1< 
lira sup sup N 2 ( K + I )  2 E ( K + I - k )  
N.-..* +oo 0ER k= l  

N--k--1 ) 
�9 R e (  eik~ E f(Tn+kx)" f(Tnx)" f'(S'~+kY)" f ' (S"y) 

n=0 

= s u p R e (  2 K fo 2'r / oe• ( g  + 1) 2 E ( K  + 1 - k)e ik~ e-ikta~y(dt) . 
k=l 

We can conclude with the next lemma. 

LEMMA: I f  o" is a continuous measure on the interval, then 

fo 'r 1 K lim E ( K  + 1 - k)e'k(~ = 0 
K---*+oo "-~ k= l 

uniformly in 8. 

And this lemma is a simple consequence of the following remark: 

if a is a continuous measure on the interval [0, 27r], then, for all 6 > 0, there 

exist rl > 0 such that, for all intervals I of length less than r/, we have a(I) < s 
| 

5. Characterizat ion of  the  algebra C: proof  of  Theorem 2 

The uniform version of the Wiener-Wintner return-times theorem for functions 

f in the orthogonM of C has been proved in the preceding section. This is the 

implication (i) ~ (ii) of Theorem 2. 

The fact that conditions (iii) and (iv) are necessary for this uniform 

property is, as we shall see, easy to prove. The interesting point is that each 

of these two conditions is sufficient. 

Let (X,~' ,  p ,T)  be an ergodic m.p.s, and f E L2(#). We begin by a 

remark showing that it is not possible to weaken the conditions (iii) and (iv) of 

Theorem 2. 

Remark: We define two new conditions (iii)' and (iv)' by 

(iii)' for #-almost all x, for all 0 E ~ for p-almost all x', 

N--1 

lim 1 N--.+oo -N E ei'~~ f(T'~x')f(Tnx) = 0; 
n=0 
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(iv)' 

lim 
N ~ + ~  
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sup N N-~ein~ , L = 0 .  
0GR n----0 L2(d~(x )) L2(d#(x) ) 

These two conditions are not sufficient to ensure that f E C • This can easily 

be justified looking at the dynamical system (T 2, (x, y) ~ (x + a, y + x)) where 

a is an irrational real number, and at the function f(x, y) = exp(2iTry). For this 

system, we have C -L = {0}. 

We are now going into some detail in the proof of Theorem 2. 

In order to prove the implication (ii) => (iii) and (iv), we are going to apply 

condition (ii) with (Y, ~, v, S) = (X, .~, #, T) and f '  = f .  The implication (ii) =v 

(iii) is clear. For the other one, we remark that 

I 
and, by the mean ergodic theorem, the sequence on the right side of this inequality 

is convergent in LI (# |  This implies that the sequence on the left is uniformly 

integrable. So, if we know that it tends to zero almost everywhere, then it tends 

to zero in the mean. We have shown that (ii) :=> (iv). 

It remains to prove that (iii) or (iv) => f E C -L. Under the condition (iii) 

we have: 

for #-almost all ergodic components (#@#)c of the product measure # |  

for (# | #)ca lmost  all (x, x'), for all 0 E R, 

1 
l i m ~  E e'n~ = O. 

n ( N  

By the Wiener-Wintner theorem, this implies that, for almost all ergodic 

components (# | #)c, the function f | ] is orthogonal to the Kronecker fac- 

tor of the system (X x X, ~" x ~', (# | #)c, T x T). 

Under condition (iv) we have: for almost all ergodic components (# | #)c, 

the sequence 
1 I 

supa N E ein~ f(Tnx:)f(T'~x) 
n•N 
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tends to zero in L2((# | #)~); and we know that  if, for all 9, the sequence 

1 
-~ Z e ' "~  

393 

We have 

(9) 

I ! where ~(g, g2, 92) = (g, g2, cg, f2) and 

U ! . c(g, 

.,'1| (a(X)|174174 
X , X I E ~ 2  

n < N  

tends to zero in L2((# | #)c), then the function f | f is orthogonal to the 

Kroneeker factor of the system (X • X, Y: • 3 c, (# | #)c, T • T). 

Thus conditions (iii) and (iv) have the same consequence, and the next 

proposition will conclude the proof of Theorem 2. This proposition can be viewed 

as a converse to Theorem 3 ~. 

PROPOSITION 3: If, for almost all ergodic components (# | #)~ of the product 

measure # @ # under the transformation T x T, the function f | ] is orthogonal 

to the Kroneeker factor of the system (X x X, yr x ~,  (# @ #)~), T x T), then 

the function f is orthogonal to the d-factor of the system (X, U, #, T). 

This result appears in [R2]. We now give a short proof of it, using the 

Wiener-Wintner point of view. We use notation introduced in the first section. 

The C-factor is (G x G2, m := mG | me2, Ra0,~). We can write f = f l  + f2 with 

f l  E C and f2 E C A-. We know, by Theorem 3', that  f1|  f2Qf l  and f2| are 

orthogonal to the Kronecker factor in almost all m.p.s. (X x X, (p|  T x T). 

We want to prove that  if f l r  0, then the function f l  | ]1 does not have 

this property. We are looking at the function f l  as defined on G x G2, and we 

suppose f l  r 0. We can write f l  = ~ x e ~ 2  a(X) | X in L 2 where, for each 

character X of G2, the coefficient a(X) is a square integrable function on G. The 

ergodic components of the product measure on (G • G2) • (G x G2) are indexed 

by c E G and are given by an isomorphism I~ of measure preserving systems: 

((G x 62) x (G x G2), (m | Rgo,  x Rgo, ) 

Ic (G x G2 x G 2 , m a  | me2 | me2 Uc) 
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and this is an orthogonal decomposition in L2((m | m)c). 

Choose a(X) r 0 and define F := (a(X)|174 | X) and Fc := FoIc. 
We have 

F~(g, g2, g'2) = [a(X)(g)][(a(X)(eg)]X(g2)X(g'2) 
and 

1 ei'~~ Un ' I 

= N 

(by the functional equation (E)). This expression has the form 

N n~<N ei'~~ A( c, g '~ g ) 

where, for a non-negligible set of c in G, the function A(c, .) is different from 

zero. For each such c, there exists 0 E R with 

1 g g) 
limsuPN -N n~<N eine A(c' L2(dg) ~> O. 

For a non-negligible set of c in G, there exists 0 E R such that  the sequence 

N~<Nei'~~ n = Nn~<Ne~n~ , 
L'7((m@m)r L 2 

does not tend to zero. 

Using the orthogonal decomposition (9), we have: for a non-negligible set 

of c in G, there exist ~ E R such that  the sequence 

IIN E e i n ~ 1 7 4  O(Rgo,~XRgo,~) n d o e s n o t t e n d t o z e r o .  
n<~N L2((m| 

This means that,  for a non-negligible set of c in G, the function f l  | f l  is not 

orthogonal to the Kronecker factor of the m.p.s. (X x X, (m | m)c, T • T). | 
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